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Université catholique de Louvain

B-1348 Louvain-la-Neuve, Belgium

Editor: Inderjit Dhillon

Abstract

Nonnegative matrix factorization (NMF) has become a very popular technique in machine learning

because it automatically extracts meaningful features through a sparse and part-based representa-

tion. However, NMF has the drawback of being highly ill-posed, that is, there typically exist many

different but equivalent factorizations. In this paper, we introduce a completely new way to ob-

taining more well-posed NMF problems whose solutions are sparser. Our technique is based on

the preprocessing of the nonnegative input data matrix, and relies on the theory of M-matrices and

the geometric interpretation of NMF. This approach provably leads to optimal and sparse solutions

under the separability assumption of Donoho and Stodden (2003), and, for rank-three matrices,

makes the number of exact factorizations finite. We illustrate the effectiveness of our technique on

several image data sets.

Keywords: nonnegative matrix factorization, data preprocessing, uniqueness, sparsity, inverse-

positive matrices

1. Introduction

Given an m-by-n nonnegative matrix M ≥ 0 and a factorization rank r, nonnegative matrix fac-

torization (NMF) looks for two nonnegative matrices U and V of dimension m-by-r and r-by-n

respectively such that M ≈ UV . To assess the quality of an approximation, a popular choice is

the Frobenius norm of the residual ||M −UV ||F and NMF can for example be formulated as the

following optimization problem

min
U∈Rm×r,V∈Rr×n

||M−UV ||2F such that U ≥ 0 and V ≥ 0. (1)

Assuming that M is a matrix where each column represents an element of a data set (for example,

a vectorized image of pixel intensities), NMF can be interpreted in the following way. Since M: j ≈
∑r

k=1U:kVk j ∀ j, each column M: j of M is reconstructed using an additive linear combination of

nonnegative basis elements (the columns of U). These basis elements can be interpreted in the same

way as the columns of M (for example, as images). Moreover, they can only be summed up (since

V is nonnegative) in order to approximate the original data matrix M which leads to a part-based

representation: NMF will automatically extract localized and meaningful features from the data set.

∗. The author is a postdoctoral researcher with the fonds de la recherche scientifique-FNRS (F.R.S.-FNRS). This text

presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State,

Prime Minister’s Office, Science Policy Programming. The scientific responsibility is assumed by the author.

c©2012 Nicolas Gillis.



GILLIS

The most famous illustration of such a decomposition is when the columns of M represent facial

images for which NMF is able to extract common features such as eyes, noses and lips (Lee and

Seung, 1999); see Figure 8 in Section 6.

NMF has become a very popular data analysis technique and has been successfully used in

many different areas such as hyperspectral imaging (Pauca et al., 2006), text mining (Xu et al.,

2003), clustering (Ding et al., 2005), air emission control (Paatero and Tapper, 1994), blind source

separation (Cichocki et al., 2009), and music analysis (Févotte et al., 2009).

1.1 Geometric Interpretation of NMF

A very useful tool for understanding NMF better is its geometric interpretation. In fact, NMF is

closely related to a problem in computational geometry consisting in finding a polytope nested

between two given polytopes. In this section, we briefly recall this connection, which will be exten-

sively used throughout the paper.

Let (U,V ) be an exact NMF of M (that is, M =UV , U ≥ 0 and V ≥ 0), and let us assume that

no column of U or M is all zeros; otherwise they can be removed without loss of generality.

Definition 1 (Pullback map) Given an m-by-n nonnegative matrix X without all-zero column, D(X)
is the n-by-n diagonal matrix whose diagonal elements are the inverse of the ℓ1-norms of the columns

of X:

D(X)ii = ||X:i||−1
1 =

(
m

∑
k=1

|Xki|
)−1

∀i, D(X)i j = 0 ∀ i 6= j, (2)

and θ(X) = XD(X) is the pullback map of X so that θ(X) is column stochastic, that is, θ(X) is

nonnegative and its columns sum to one.

We have that (see Chu and Lin, 2008)

M =UV ⇐⇒ θ(M) = MD(M) =UD(U)
︸ ︷︷ ︸

θ(U)

D(U)−1V D(M)
︸ ︷︷ ︸

V ′

⇐⇒ θ(M) = θ(U)V ′,

where V ′ must be column stochastic since θ(M) and θ(U) are both column stochastic and θ(M) =
θ(U)V ′. Therefore, the columns of θ(M) are convex combinations (linear combinations with non-

negative weights summing to one) of the columns of θ(U). This implies that

conv(θ(M)) ⊆ conv(θ(U)) ⊆ ∆m, (3)

where conv(X) denotes the convex hull of the columns of matrix X , and ∆m = {x ∈ R
m | ∑m

i xi =
1,xi ≥ 0 1≤ i≤m} is the unit simplex (of dimension m−1). An exact NMF M =UV can then be ge-

ometrically interpreted as a polytope T = conv(θ(U)) nested between an inner polytope conv(θ(M))
and an outer polytope ∆m.

Hence finding the minimal number of nonnegative rank-one factors to reconstruct M ex-

actly is equivalent to finding a polytope T with minimum number of vertices nested be-

tween two given polytopes: the inner polytope conv(θ(M)) and the outer polytope ∆m.

This problem is referred to as the nested polytopes problem (NPP), and is then equivalent to com-

puting an exact nonnegative matrix factorization (Hazewinkel, 1984); see also Gillis and Glineur

(2012a) and the references therein. In the remaining of the paper, we will denote NPP(M) the NPP

instance corresponding to M with inner polytope conv(θ(M)) and outer polytope ∆m.
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Remark 2 The geometric interpretation can also be equivalently characterized in terms of cones,

see Donoho and Stodden (2003), for which we have

cone(M) ⊆ cone(U) ⊆ R
m
+,

where cone(X) = {x|x = Xa,a ≥ 0}. The geometric interpretation based on convex hulls from

Equation (3) amounts to the intersection of the cones with the hyperplane {x|∑xi = 1} (this is the

reason why zero columns of M and U need to be discarded in that case).

1.2 Uniqueness of NMF

There are several difficulties in using NMF in practice. In particular, the optimization problem

(1) is NP-hard (Vavasis, 2009), and typically only convergence to stationary points is guaranteed

by standard algorithms. There does not seem to be an easy way to go around this (except if the

factorization rank is very small, see Arora et al., 2012) since NMF problems typically have many

local minima.

Another difficulty is the non-uniqueness: even if one is given an optimal (or good) NMF (U,V )
of M, there might exist many equivalent solutions (UQ,Q−1V ) for non-monomial1 matrices Q with

UQ ≥ 0 and Q−1V ≥ 0, see Laurberg et al. (2008). Such transformations lead to different interpre-

tations, especially when the supports of U and V change. For example, in document classification,

each entry Mi j of matrix M indicates the ‘importance’ of word i in document j (for example, the

number of appearances of word i in text j). The factors (U,V ) of NMF are interpreted as follows:

the columns of U represent the topics (that is, bags of words) while the columns of V link the doc-

uments to these topics. The sparsity patterns of U and V are then a crucial characteristic since they

indicate which words belong to which topics and which topics is discussed by which documents.

Different approaches exist to obtain (more) well-posed NMF problems and most of them are

based on the incorporation of additional constraints into the NMF model, for example,

• Sparsity. Require the factors in NMF to be sparse. Under some appropriate assumptions, this

leads to a unique solution (Theis et al., 2005). Geometrically, requiring the matrix U to be

sparse is equivalent to requiring the vertices of the nested polytope conv(θ(U)) to be located

on the low-dimensional faces of the outer polytope ∆m, hence making the problem more well

posed. In practice, the most popular technique to obtain sparser solutions is to add sparsity

inducing penalty terms, such as a ℓ1-norm penalty (Kim and Park, 2007) (see also Section 6).

Another possibility is to use a projection onto the set of sparse matrices (Hoyer, 2004).

• Minimum Volume. Require the polytope conv(θ(U)) to have minimum volume (Miao and

Qi, 2007; Huck et al., 2010; Zhou et al., 2011) which has a long history in hyperspectral

imaging (Craig, 1994). Again, this constraint is typically enforced using a proper penalty

term in the objective function. Volume maximization of conv(θ(U)) is also possible, leading

to a sparser factor U (since the columns of U will be encouraged to be on the faces of ∆m),

see Wang et al. (2010), which is essentially equivalent to performing volume minimization

for the matrix transpose. In fact, taking the polar of the three polytopes in Equation (3)

interchanges the role of the inner and outer polytopes, while the polar of conv(θ(M)) is given

by conv(θ(MT )), see Gillis (2011, Section 3.6).

1. A monomial matrix is a permutation of a diagonal matrix with positive diagonal elements.
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• Orthogonality. Require the columns of matrix U to be orthogonal (Ding et al., 2006). Geo-

metrically, it amounts to position the vertices of conv(θ(U)) on the low-dimensional faces of

∆m so that if one of the columns of θ(U) is not on a facet of ∆m (that is, Uik > 0 for some i,k),

then all the other columns of U must be on that facet (that is, Uip = 0 ∀p 6= k). This condition

is rather restrictive, but proved successful in some situations, for example in clustering; see

Ding et al. (2005) and Pompili et al. (2011).

1.3 Outline of the Paper

In this paper, we address the problem of uniqueness and introduce a completely new approach to

make NMF problems more well posed, and obtain sparser solutions. Our technique is based on a

preprocessing of the input matrix M to make it sparser while preserving its nonnegativity and its

column space. The motivation is based on the geometric interpretation of NMF which shows that

sparser matrices will correspond to more well-posed NMF problems whose solutions are sparser.

In Section 2, we recall how sparsity of M makes the corresponding NMF problem more well

posed. In particular, we give a new result linking the support of M and the uniqueness of the

corresponding NMF problem. In Section 3, we introduce a preprocessing P (M) = MQ of M where

Q is an inverse-positive matrix, that is, Q has full rank and its inverse Q−1 is nonnegative. Hence,

if (U,V ′) is an NMF of P (M) with P (M) ≈ UV ′, then (U,V ′Q−1) is an NMF of M since M =
P (M)Q−1 ≈ UV ′Q−1 and V ′Q−1 ≥ 0. In Section 4, we prove some important properties of the

preprocessing; in particular that it is well-defined, invariant to permutation and scaling, and optimal

under the separability assumption of Donoho and Stodden (2003). Moreover, in the exact case for

rank-three matrices (that is, M = UV and rank(M) = 3), we show how the preprocessing can be

used to obtain an equivalent NMF problem with a finite number of solutions. In Section 5, we

address some practical issues of using the preprocessing: the computational cost, the rescaling of

the columns P (M) and the ability to dealing with sparse and noisy matrices. In Section 6, we present

some very promising numerical experiments on facial and hyperspectral image data sets.

2. Non-Uniqueness, Geometry and Sparsity

Let M ∈ R
m×n
+ and (U,V ) ∈ R

m×r
+ ×R

r×n
+ be an exact nonnegative matrix factorization of M =

UV . The minimum r such that such a decomposition exists is the nonnegative rank of M and

will be denoted rank+(M). If U is not full rank (that is, rank(U) < r), then the decomposition

is typically not unique. In fact, the convex combinations (given by V ≥ 0) cannot in general be

uniquely determined: the polytope T = conv(θ(U)) has r vertices while its dimension is strictly

smaller than r− 1 implying that any point in the interior of T can be reconstructed with infinitely

many convex combinations of the r vertices of T . However, if all columns of conv(θ(M)) are located

on k-dimensional faces of T having exactly k+ 1 vertices, then the convex combinations given by

V are unique (Sun and Xin, 2011).

In practice, it is therefore often implicitly assumed that rank+(M) = rank(M) = r hence

rank(U) = r (since U has r columns and spans the column space of M of dimension r); see the

discussion by Arora et al. (2012) and the references therein. In this situation, the uniqueness can be

characterized as follows:

Theorem 3 (Laurberg et al., 2008) Let (U,V ) ∈ R
m×r
+ × R

r×n
+ and M = UV with rank(M) =

rank(U) = r. Then the following statments are equivalent:
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(i) The exact NMF (U,V ) of M is unique (up to permutation and scaling).

(ii) There does not exist a non-monomial invertible matrix Q such that U ′ = UQ ≥ 0 and V ′ =
Q−1V ≥ 0.

(iii) The polytope conv(θ(U)) is the unique solution of NPP(M) with r vertices.

It is interesting to notice that the columns of M containing zero entries are located on the bound-

ary of the outer polytope ∆m, and these points must be on the boundary of any solution T of NPP(M).

Therefore, if M contains many zero entries, it is more likely that the set of exact NMF of M will

be smaller, since there is less degree of freedom to fill in the space between the inner and outer

polytopes. In particular, Donoho and Stodden (2003) showed that “requiring that some of the data

are spread across the faces of the nonnegative orthant, there is unique simplicial cone”, that is, there

is a unique conv(θ(U)).

In the following, based on the assumption that rank(M) = rank+(M), we provide a new unique-

ness result using the geometric interpretation of NMF and the sparsity pattern of M.

Lemma 4 Let M ∈ R
m×n with r = rank(M) = rank+(M), and M have no all-zero columns. If r

columns of θ(M) coincide with r different vertices of ∆m ∩ col(θ(M)), then the exact NMF of M is

unique.

Proof Let (U,V ) ∈ R
m×r
+ ×R

r×n
+ be such that M =UV . Since r = rank(M) = rank+(M), we must

have rank(U) = r and col(U) = col(M) (where col(X) denotes the column space of matrix X), hence

conv(θ(M))⊆ conv(θ(U))⊆ ∆m ∩ col(θ(M)).

Since r columns of θ(M) coincide with r vertices of ∆m ∩ col(θ(M)), we have that conv(θ(U)) =
conv(θ(M)) is the unique solution of NPP(M), and Theorem 3 allows to conclude.

In order to identify such matrices, it would be nice to characterize the vertices of ∆m∩col(θ(M))
based solely on the sparsity pattern of M. By definition, the vertices of ∆m ∩ col(θ(M)) are the

intersection of r−1 of its facets, and the facets of ∆m ∩ col(θ(M)) are given by

Fi = {x ∈ ∆m ∩ col(θ(M)) | xi = 0}.

Therefore, a vertex of ∆m ∩ col(θ(M)) must contain at least r−1 zero entries. However, this is not

a sufficient condition because some facets might be redundant, for example, if the ith row of M is

identically equal to zero (for which Fi = ∆m ∩ col(θ(M))) or if the ith and jth row of M are equal to

each other (for which Fi = Fj).

Lemma 5 A column of M containing r−1 zeros whose corresponding rows have different sparsity

patterns corresponds to a vertex of conv(θ(M))∩∆m.

Proof Let c be one of the columns of M with at least r−1 zeros corresponding to rows with different

sparsity patterns, that is, there exists J ⊆ {i | ci = 0} with |J |= r−1 such that the rows of M(J , :)
have different sparsity patterns. Let also Fk = {x | xJ (k) = 0} for 1 ≤ k ≤ r−1 denote the r−1 facets

with θ(c) ∈ Fk ∀k. To show that θ(c) is a vertex of conv(θ(M))∩∆m, it suffices to show that the
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r− 1 facets are not redundant: for all 1 ≤ k < p ≤ r− 1, there exist xk and xp in conv(θ(M))∩∆m

such that xk ∈ Fk,xk /∈ Fp and xp ∈ Fp,xp /∈ Fk. Because the rows of M(J , :) have different sparsity

patterns, for all 1 ≤ k < p ≤ r−1, there must exist two indices h and l such that M(J (k),h) = 0 and

M(J (p),h)> 0 while M(J (k), l)> 0 and M(J (p), l) = 0. Therefore, θ(M:h) ∈ Fk,θ(M:h) /∈ Fp and

θ(M:l) ∈ Fp,θ(M:l) /∈ Fk and the proof is complete.

Theorem 6 Let M ∈R
m×n with r = rank(M)= rank+(M). If M has r non-zero columns each having

r−1 zero entries whose corresponding rows have different sparsity patterns, then the NMF of M is

unique.

Proof This follows directly from Lemma 4 and 5.

Here is an example,

M =







0 1 1

0 0 1

1 0 0

1 1 0






,

with rank(M) = rank+(M) = 3 whose unique NMF is M = MI, where I is the identity matrix of

appropriate dimension. Other examples include matrices containing an r-by-r monomial submatrix;

see also Kalofolias and Gallopoulos (2012) and the references therein. It is interesting to notice that

this result implies that the only 3-by-3 rank-three nonnegative matrices having a unique exact NMF

are the monomial matrices (permutation and scaling of the identity matrix) since all other matrices

have at least two distinct exact NMF: M = MI = IM.

Finally, although sparsity is neither a necessary (see Remark 7 below) nor a sufficient condition

for uniqueness (except in some cases, see for example Theorem 6 or Donoho and Stodden, 2003),

the geometric interpretation of NMF shows that sparser matrices M lead to more well-posed NMF

problems. In fact, many points of the inner polytope in NPP(M) are located on the boundary of the

outer polytope ∆m. Moreover, because the solution T must contain these points, it will have zero

entries as well. In particular, assuming M does not contain a zero column, it is easy to check that

for M =UV we have

Mi j = 0 ⇒ ∃k such that Uik = 0.

Remark 7 Having many zero entries in M is not a necessary condition for having an unique NMF.

In fact, Laurberg et al. (2008) showed that there exist positive matrices with unique NMF. However,

for an NMF (U,V ) to be unique, the support of each column of U (resp. row of V ) cannot be

contained in the support of any another column (resp. row) so that each column of U (resp. row of

V ) must have at least one zero entry. In fact, assume the support of the kth column of U is contained

in the support of lth column. Then noting p̄ = argmin{p|U(p,k) 6=0}
U(p,l)
U(p,k) , ε = U( p̄,l)

U( p̄,k) , and

Dkl =−ε, Dii = 1 ∀i, Di j = 0 otherwise,

one can check that D−1 is as follows

D−1
kl = ε, D−1

ii = 1 ∀i, D−1
i j = 0 otherwise,

that is D−1 ≥ 0. Therefore (UD,D−1V ) is an equivalent NMF with a different sparsity pattern since

(UD):l =UD:l =U:l − εU:k ≥ 0, and Up̄l > 0 while (UD) p̄l = 0.
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3. Preprocessing for More Well-Posed and Sparser NMF

In this section, we introduce a completely new approach to obtain more well-posed NMF problems

whose solutions are sparser. As it was shown in the previous paragraph, this can be achieved by

working with sparser nonnegative matrices. Hence, we look for an n-by-n matrix Q such that MQ =
M′ is nonnegative, sparse and Q is inverse-positive. In other words, we would like to solve the

following problem:

min
Q∈Rn×n

||MQ||0 such that MQ ≥ 0 and Q−1 ≥ 0, (4)

where ||X ||0 is the ℓ0-‘norm’ which counts the number of non-zero entries in X . Assuming we can

solve (4) and obtain a matrix M′ = MQ, then any NMF (U,V ′) of M′ with M′ ≈UV ′ gives a NMF

for M. In fact,

M = M′Q−1 ≈ UV ′Q−1 = UV, where V =V ′Q−1 ≥ 0,

for which we have

||M−UV ||F = ||M′Q−1 −UV ′Q−1||F = ||(M′−UV ′)Q−1||F ≤ ||M′−UV ′||F ||Q−1||2.

In particular, if the NMF of M′ is exact, then we also have an exact NMF for M = M′Q−1 =
UV ′Q−1 = UV . The converse direction, however, is not always true. We return to this point in

Section 4.3.

In the remaining of this section, we propose a way to finding approximate solutions to problem

(4). First, we briefly review some properties of inverse-positive matrices (Section 3.1) in order to

deal with the constraint Q−1 ≥ 0. Then, we replace the ℓ0-‘norm’ with the ℓ2-norm and solve the

corresponding optimization problem using constrained linear least squares (Section 3.2).

3.1 Inverse-Positive Matrices

In this section, we recall the definition of three types of matrices: Z-matrices, M-matrices and

inverse-positive matrices, briefly recall how they are related and provide some useful properties.

We refer the reader to the book of Berman and Plemmons (1994) and the references therein for

more details on the subject.

Definition 8 An n-by-n Z-matrix is a real matrix with non-positive off-diagonal entries.

Definition 9 An n-by-n M-matrix is a real matrix of the following form:

A = sI −B, s > 0, B ≥ 0,

where the spectral radius2 ρ(B) of B satisfies s ≥ ρ(B).

It is easy to see that an M-matrix is also a Z-matrix.

Definition 10 An n-by-n matrix Q is inverse positive if and only if Q−1 exists and Q−1 is nonnega-

tive. We will denote this set I P n:

I P n = {Q ∈ R
n×n | Q is full rank and Q−1 ≥ 0}.

2. The spectral radius ρ(B) of a n-by-n matrix B is the supremum among all the absolute values of the eigenvalues of B:

ρ(B) = maxi |λi(B)|.
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It can be shown that inverse-positive Z-matrices are M-matrices:

Theorem 11 (Berman and Plemmons 1994, Theorem 2.3) Let A be a Z-matrix. Then the follow-

ing conditions are equivalent :

• A is an invertible M-matrix.

• A = sI −B with B ≥ 0, s > ρ(B).

• A ∈ I P n.

Here is another well-known theorem in matrix theory which will be useful, see Taussky (1949)

and the references therein.

Definition 12 An n-by-n matrix A is irreducible if and only if there does not exist an n-by-n permu-

tation matrix P such that

PT AP =

(
B C

0 D

)

,

where B and D are square matrices.

Definition 13 An n-by-n matrix A is irreducibly diagonally dominant if A is irreducible,

|Aii| ≥ ∑
k 6=i

|Aki|, for i = 1,2, . . . ,n,

and the inequality is strict for at least one i.

Theorem 14 If A is irreducibly diagonally dominant, then A is nonsingular.

3.2 Constrained Linear Least Squares Formulation for (4)

The ℓ0-‘norm’ is of combinatorial nature and typically leads to intractable optimization problems.

The standard approach is to use the ℓ1-norm instead but we propose here to use the ℓ2-norm. The

reason is twofold:

• When looking at the structure of problem (4), we observe that any (reasonable) norm will

induce solutions with zero entries. In fact, some of the constraints MQ ≥ 0 will always be

active at optimality because of the objective function ||MQ||.

• The ℓ2-norm is smooth hence its optimization can be performed more efficiently.3

We then would like to solve

min
Q∈I P n

||MQ||2F such that MQ ≥ 0. (5)

Optimizing over the set of inverse-positive matrices I P n seems to be very difficult. At least, de-

scribing I P n explicitly as a semi-algebraic set requires about n2 polynomial inequalities of degree

3. Because of the constraint MQ ≥ 0, the ℓ1-norm problem can actually be decoupled into n linear programs (LP) in

n variables and m+ n constraints, and can be solved effectively. However, in the noisy case (cf. Section 5.3), we

would need to introduce mn auxiliary variables (one for each term of the objective function) which turns out to be

impractical.
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up to n, each with up to n! terms. However, we are not aware of a rigorous analysis of the complexity

of this type of problems; this is a topic for further research.

For this reason, we will restrict the search space to the subset of Z-matrices, that is, inverse-

positive matrices of the form Q = sI −B, where s is a nonnegative scalar, I is the identity matrix

of appropriate dimension and B is a nonnegative matrix such that ρ(B) < s, see Section 3.1. It is

important to notice that

• The scalar s cannot be chosen arbitrarily. In fact, making s go to zero and B = 0, the objective

function value goes to zero, which is optimal for (5). The same degree of freedom is in fact

present in the original problem (4) since Q and αQ for any α > 0 are equivalent solutions.

Therefore, without loss of generality, we fix s to one .

• The diagonal entries of B cannot be chosen arbitrarily. In fact, taking B arbitrarily close (but

smaller) to the identity matrix, the infimum of (5) will be equal to zero. We then have to set an

upper bound (smaller than one) for the diagonal entries of B. It can be checked that this upper

bound will always be attained (because of the minimization), and that the optimal solutions

corresponding to different upper bounds will be multiples of each other. We therefore fix the

bound to zero implying Bii = 0 for all i so that Qii = 1 for all i.

Finally, we would like to solve

min
Q∈Q n

||MQ||2F such that MQ ≥ 0,

where

Q n = {Q ∈ R
n×n | Q = I −B,B ≥ 0,Bii = 0 ∀i,ρ(B)< 1} ⊂ I P n.

Since MQ = M(I −B)≥ 0, this problem is equivalent to

min
B∈Rn×n

n

∑
i=1

∥
∥
∥M:i −∑

k 6=i

M:kBki

∥
∥
∥

2

2

such that M ≥ MB, (6)

ρ(B)< 1,

Bii = 0 ∀i, B ≥ 0.

Without the constraint on the spectral radius of B, this is a constrained linear least squares problem

(CLLS) in O(n2) variables and O(n2 +mn) constraints. The ith column of M′ = MQ, which is the

preprocessed version of M, will then be given by the following linear combination

M′
:i = MQ:i = M:i −

n

∑
k=1

M:kBki ≥ 0, where Bki ≥ 0 ∀i,k and Bii = 0. (7)

This means that we will subtract from each column of M a nonnegative linear combination of the

other columns of M in order to maximize its sparsity while keeping its nonnegativity. Intuitively,

this amounts to keeping only the non-redundant information from each column of M (see Section 6

for some visual examples).
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3.2.1 RELAXING THE CONSTRAINT ON THE SPECTRAL RADIUS

In general, there is no easy way to deal with the non-convex constraint ρ(B) < 1. In particular,

this constraint may lead to difficult optimization problems, for example, finding the nearest stable

matrix to an unstable one:

min
X

||X −A|| such that ρ(X)≤ 1,

see Polyak and Shcherbakov (2005) and the references therein. This means that even the projection

on the feasible set is non-trivial.

However, we will prove in Section 4 that if the columns of M are not multiples of each other,

then any optimal solution of problem (6) without the constraint on the spectral radius of B, that is,

any optimal solution B∗ of

min
B∈Rn×n

+

n

∑
i=1

∥
∥
∥M:i −∑

k 6=i

M:kBki

∥
∥
∥

2

2
such that M ≥ MB, Bii = 0 ∀i, (8)

automatically satisfies ρ(B∗) < 1 (Theorem 21). Hence, the approach may only fail when there

are repetitions in the data set. The reason is that when a column is multiple of another one, say

M:i = αM: j for i 6= j and α > 0, then taking Bi j = α (0 otherwise for that column) gives MQ:i =
M:i−αM: j = 0 and similarly for M: j. Hence we have lost a component in our data set and potentially

produce a lower rank matrix MQ. In practice, it will be important to make sure that the columns of

M are not multiples of each other (even though it is usually not the case for well-constructed data

sets).

4. Properties of the Preprocessing

In the remainder of the paper, we denote B∗(M) the set of optimal solutions of problem (8) for the

data matrix M, and P the preprocessing operator defined as

P : Rm×n
+ → R

m×n
+ : M 7→ P (M) = M(I −B∗), where B∗ ∈ B∗(M).

In this section, we prove some important properties of P and B∗(M):

• The preprocessing operator P is well-defined (Theorem 15).

• The preprocessing operator P is invariant to permutation and scaling of the columns of M

(Lemma 16).

• If the columns of θ(M) are distinct, then ρ(B∗)< 1 for any B∗ ∈ B∗(M) (Theorem 21).

• If the vertices of conv(θ(M)) are distinct then

– There exists B∗ ∈ B∗(M) such that ρ(B∗)< 1 (Corollary 22).

– rank(P (M)) = rank(M) and rank+(P (M))≥ rank+(M) (Corollary 19).

• If the matrix M is separable, then the preprocessing allows to recover a sparse and optimal

solution of the corresponding NMF problem (Theorem 24). In particular, it is always optimal

for rank-two matrices (Corollary 25).

• If the matrix has rank-three, then the preprocessing yields an instance in which the number of

solutions of the exact NMF problem is finite (Theorem 29).
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4.1 General Properties

A crucial property of our preprocessing is that it is well-defined.

Theorem 15 The preprocessing P (M) is well-defined: for any B∗
1 ∈ B∗(M),B∗

2 ∈ B∗(M), we have

M(I −B∗
1) = M(I −B∗

2) = P (M).

Proof Problem (8) can be decoupled into n independent CLLS (one for each column of M) of the

form:

min
b∈Rn−1

+

‖d −Cb‖2 such that Cb ≤ d, (9)

which is equivalent to

min
b∈Rn−1

+ ,y∈Rm

‖d − y‖2 such that y ≤ d,y =Cb.

The result follows from the fact that the ℓ2 projection onto a polyhedral set (actually any convex set)

yields a unique point.

Another important property of the preprocessing is its invariance to permutation and scaling of

the columns of M.

Lemma 16 Let M be a nonnegative matrix and P be a monomial matrix. Then, P (MP) = P (M)P.

Proof We are going to show something slightly stronger; namely that B∗ is an optimal solution of

(8) for matrix M if and only if P−1B∗P is an optimal solution of (8) for matrix MP:

B∗ ∈ B∗(M) ⇐⇒ P−1B∗P ∈ B∗(MP).

First, note that B is a feasible solution of (8) for M if and only if P−1BP is a feasible solution of

(8) for MP. In fact, nonnegativity of B and its diagonal zero entries are clearly preserved under

permutation and scaling while

M ≥ MB ⇐⇒ MP ≥ MBP ⇐⇒ MP ≥ (MP)(P−1BP).

Hence there is one-to-one correspondence between feasible solutions of (8) for M and (8) for MP.

Then, let B∗ be an optimal solution of (8). Because (8) can be decoupled into n independent

CLLS’s, one for each column of B (cf. Equation (9)), we have

||M:i −MB∗
:i||22 ≤ ||M:i −MB:i||22, ∀i,

for any feasible solution B of (8). Letting p ∈ R
n
+ be such that pi is equal to the non-zero entry of

the ith row of P, we have

∑
i

p2
i ||M:i −MB∗

:i||22 = ∑
i

||M:i pi −MPP−1B∗
:i pi||22

= ||MP−MPP−1B∗P||2F
≤ ∑

i

p2
i ||M:i −MB:i||22 = ||MP−MPP−1BP||2F ,
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for any feasible solution B′ = P−1BP of (8) for MP. This proves B∗ ∈B∗(M)⇒P−1B∗P∈B∗(MP).
The other direction follows directly by using the permutation P−1 on the matrix MP.

It is interesting to observe that if a column of M belongs to the convex cone generated by the

other columns, then the corresponding column of P (M) is equal to zero.

Lemma 17 Let J = {1,2, . . . ,n}\{i}. Then P (M):i = 0 if and only if M:i ∈ cone(M(:,J )).

Proof We have that

P (M):i = M:i −∑
k 6=i

B∗
kiM:k = 0, B∗

ki ≥ 0 ⇐⇒ M:i = ∑
k 6=i

B∗
kiM:k, B∗

ki ≥ 0.

The preprocessed matrix P (M) may contain all-zero columns, for which the function θ(.) is

not defined (cf. Definition 1). We extend the definition to matrices with zero columns as follows:

θ(X) is the matrix whose columns are the normalized non-zero columns of X , that is, letting Y

be the matrix X where the non-zero columns have been removed, we define θ(X) = θ(Y ). Hence

conv(θ(X)) denotes the convex hull of the normalized non-zero columns of X .

Another straightforward property is that the preprocessing can only inflate the convex hull de-

fined by the columns of θ(M).

Lemma 18 Let M ∈ R
m×n
+ . If the vertices of conv(θ(M)) are non-repeated, then

conv(θ(M)) ⊆ conv(θ(P (M))) ⊆ ∆m ∩ col(θ(M)).

Proof By construction, since P (M) = MQ, col(θ(P (M))) ⊆ col(θ(M)) and conv(θ(P (M))) ⊆
∆m ∩ col(θ(M)). Let i be the index corresponding to a vertex of θ(M) and J = {1,2, . . . ,n}\{i}.

Because vertices of θ(M) are non-repeated, we have M:i /∈ conv(θ(M(:,J ))), while

P (M):i = M:i −∑
k 6=i

bkiM:k ⇐⇒ M:i = P (M):i +∑
k 6=i

bkiM:k.

Hence M:i ∈ conv(θ([P (M):i M(:,J )])), which implies that

conv(θ(M))⊆ conv(θ([P (M):i M(:,J )])),

so that replacing M:i by P (M):i extends conv(θ(M)). Since this holds for all vertices, the proof is

complete.

Corollary 19 Let M ∈ R
m×n
+ . If no column of M is multiple of another column, then

rank(P (M)) = rank(M) and rank+(P (M))≥ rank+(M).
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Proof Without loss of generality, we can assume that M does not have a zero column. In fact,

a preprocessed zero column remains zero while it cannot influence the preprocessing of the other

columns (see Equation (7)). Then, by Lemma 18, we have

conv(θ(M)) ⊆ conv(θ(P (M))) ⊆ ∆m ∩ col(θ(M)),

implying rank+(P (M))≥ rank+(M) and rank(P (M)) = rank(M).
Another way to prove this result is to use Corollary 22 (see below) guaranteeing the existence

of an inverse-positive matrix Q such that P (M) = MQ which implies rank(P (M)) = rank(M).
Moreover, any exact NMF (U,V ) ∈ R

m×r ×R
r×n of P (M) gives M = UV Q−1 hence rank+(M) ≤

rank+(P (M)).

We now prove that if no column of M is multiple of another column (that is, the columns of

θ(M) are distinct) then ρ(B∗) < 1 for any B∗ ∈ B∗(M) whence Q = I −B∗ is an inverse positive

matrix.

Lemma 20 Let A be a column stochastic matrix and Q = I−B where B ≥ 0 and Bii = 0 for all i be

such that AQ ≥ 0. Then,

∑
k

Bki ≤ 1, ∀i,

so that Q is diagonally dominant. Moreover, if A:i /∈ conv(A(:,J )) where J = {1,2, . . . ,n}\{i}, then

∑
k

Bki < 1.

Proof By assumption, we have for all i

A:i ≥ AB:i = ∑
k

A:kBki,

which implies

1 = ||A:i||1 ≥ ||AB:i||1 = ||∑
k

A:kBki||1 = ||B:i||1 = ∑
k

Bki,

because A and B are nonnegative. Moreover, if A:i /∈ conv(A(:,J )), then there exists at least one

index j such that A ji > A j:B:i (Lemma 17) so that the above inequality is strict.

Theorem 21 If no column of M is multiple of another column, then any optimal solution B∗ of (8)

satisfies ρ(B∗)< 1 whence Q = I −B∗ is inverse positive.

Proof By Theorem 11, ρ(B∗) < 1 if and only if Q = I −B∗ is inverse positive if and only if Q is

a nonsingular M-matrix. Let us then show that Q is a nonsingular M-matrix. First, we can assume

without loss of generality that

• Matrix M does not contain a column equal to zero. In fact, if M does, say the first column

is equal to zero, then we must have B:1 = 0 (since M:1 ≥ MB:1 and there is not other zero

column in M). The matrix Q is then a nonsingular M-matrix if and only if Q(2:n,2:n) is.
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• The columns of M sum to one. In fact, letting P = D(M) be defined as in Equation (2), by

Lemma 16, B∗ is an optimal solution for M if and only if P−1B∗P is an optimal solution for

MP. Since B∗ and P−1B∗P share the same eigenvalues, ρ(B∗)< 1 ⇐⇒ ρ(P−1B∗P)< 1.

• Let B ∈ B∗(M), Q = I −B∗, and P be a permutation matrix such that

PT QP =










Q(1) Q(12) Q(13) . . . Q(1k)

0 Q(2) Q(23) . . . Q(2k)

0 0 Q(3) . . . Q(3k)

... . . .
. . .

. . .
...

0 . . . . . . 0 Q(k)










= I −










B(1) B(12) B(13) . . . B(1k)

0 B(2) B(23) . . . B(2k)

0 0 B(3) . . . B(3k)

... . . .
. . .

. . .
...

0 . . . . . . 0 B(k)










,

where Q(i) are irreducible for all i. Without loss of generality, by Lemma 16, we can then

assume that Q has this form.

In the following we show that Q(p) is nonsingular for each 1≤ p≤ k hence Q is. By Theorem 14,

if Q(p) is irreducibly diagonally dominant, then Q(p) is nonsingular and the proof is complete. We

already have that Q(p) is irreducible for 1 ≤ p ≤ k. Let Ip denote the index set such that Q(p) =
Q(Ip, Ip). We have M(Ip, :) is column stochastic, and

P (M)(Ip, :) = M(Ip, :)−
p−1

∑
l=1

M(Il, :)B
(l p)−M(Ip, :)B

(p) ≥ 0,

implying that M(Ip, :)≥ M(Ip, :)B
(p). Moreover the columns of M(Ip, :) are distinct so that there is

at least one which does not belong to the convex hull of the others. Hence, by Lemma 20, Q(p) is

irreducibly diagonally dominant.

Corollary 22 Let M ∈ R
m×n
+ . If the vertices of conv(θ(M)) are non-repeated, then there exists an

optimal solution B∗ ∈ B∗(M) such that ρ(B∗)< 1, that is, such that Q= I−B∗ is an inverse-positive

matrix.

Proof Let us show that there exists an optimal solution such that Q is a nonsingular M-matrix.

First, by Lemma 20, Q is diagonally dominant implying ρ(B) ≤ 1 so that Q is an M-matrix (cf.

Theorem 21). We can assume without loss of generality that the r first columns of M correspond to

the vertices of conv(θ(M)). This implies that there exists an optimal solution B∗ ∈ B∗(M) such that

Q =

(
Q1 Q12

0 I

)

= I −
(

B∗
1 B∗

12

0 0

)

, where Q1,B
∗
1 ∈ R

r×r and Q12,B
∗
12 ∈ R

r×(n−r).
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In fact, by assumption, the last columns of M belong to the convex cone of the r first ones and can

then be set to zero (which is optimal) using only the first r columns (cf. Lemma 17). Lemma 20

applies on matrix Q1 and M(:,1:r) since

MQ(:,1:r) = M(:,1:r)−M(:,1:r)B∗
1 ≥ 0,

while by assumption no column of M(:,1:r) belong to the convex hull of the other columns, so that

Q1 is strictly diagonally dominant hence is a nonsingular M-matrix.

Finally, what really matters is that the vertices of conv(θ(M)) are non-repeated. In that case,

the preprocessing is unique and the preprocessed matrix has the same rank as the original one. The

fact that Q could be singular is not too dramatic. In fact, given an NMF (U,V ′) of the preprocessed

matrix P (M) = MQ ≈UV ′, we can obtain the optimal factor V for matrix M by solving the nonneg-

ative least squares problem V = argminX≥0 ||M−UX ||2F (instead of taking V = V ′Q−1) and obtain

M ≈UV .

4.2 Recovery Under Separability

A nonnegative matrix M is called separable if it can be written as M = UV where U ∈ R
m×r
+ ,

V ∈R
r×n
+ , and for each i= 1, . . . ,r there is some column f (i) of V that has a single nonzero entry and

this entry is in the ith row, that is, V contains a monomial submatrix. In other words, each column

of U appears (up to a scaling factor) as a column of M. Arora et al. (2012) showed that the NMF

problem corresponding to a separable nonnegative matrix can be solved in polynomial time (while

NMF is NP-hard in general; see Introduction). In this section, we show that the preprocessing is able

to solve this problem while generating a sparser solution than the one obtained with the algorithm

of Arora et al. (2012). We refer the reader to Gillis and Vavasis (2012) and the references therein

for more details about NMF algorithms for separable matrices.

It is worth noting that the separability assumption is equivalent to the pure-pixel assumption in

hyperspectral imaging (for each constitutive material present in the image, there is at least one pixel

containing only that material), see Craig (1994), or, in document classification, to the assumption

that, for each topic, there is at least one document corresponding only to that topic (or, considering

the matrix transpose, that there is at least one word corresponding only to that topic, see Arora et al.,

2012). Geometrically, separabilty means that the vertices of conv(θ(M)) are given by the columns

of θ(U). We have the following straightforward lemma:

Lemma 23 M =UV is separable (that is, U ≥ 0, V ≥ 0 and V contains a monomial submatrix) if

and only if conv(θ(M)) = conv(θ(U)).

Proof M =UV where U ≥ 0, V ≥ 0 and V contains a monomial submatrix if and only if the vertices

of θ(U) and θ(M) coincide if and only if conv(θ(M)) = conv(θ(U)).

Theorem 24 If M is separable and the r vertices of θ(M) are non-repeated, then P (M) has r non-

zero columns, say S:1,S:2, . . .S:r, such that conv(θ(M))⊆ conv(θ(S)), that is, there exists R ≥ 0 such

that M = SR.
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Proof This is a consequence of Lemmas 17, 18 and 23.

Theorem 24 shows that the preprocessing is able to identify the r columns of M =UV corresponding

to the vertices of θ(M). Moreover, it returns a sparser matrix S, namely P (U), whose cone contains

the columns of M. Remark also that Theorem 24 does not require M to be full rank: the dimension

of conv(θ(M)) can be smaller than r−1.

Corollary 25 For any rank-two nonnegative matrix M whose columns are not multiples of each

other, P (M) has only two non-zero columns, say S:1 and S:2 such that conv(θ(M)) ⊆ conv(θ(S)),
that is, there exists R ≥ 0 such that M = SR. In other words, the preprocessing technique is optimal

as it is able to identify an optimal nonnegative basis for the NMF problem corresponding to the

matrix M.

Proof A rank-two nonnegative matrix is always separable. In fact, a two-dimensional pointed cone

is always spanned by two extreme vectors. In particular, rank(M) = 2 ⇐⇒ rank+(M) = 2 (Thomas,

1974).

Example 1 Here is an example with a rank-three separable matrix

M =





5 5 5 5 9 1 4 1 7 7

10 6 5 3 7 8 4 1 5 8

8 9 9 4 7 8 3 9 6 7





T 



1 0 0 2 3 6 4 4

0 1 0 5 7 7 7 4

0 0 1 9 4 4 8 6



 . (10)

Its (rounded) preprocessed version is given by

P (M) =





3.6 3.9 3.9 4.3 7.6 0 3.3 0.5 5.9 5.7
6.3 2.5 1.6 0 1.5 6.5 1.5 0 0.7 3.4
0.8 2.4 2.7 0.7 0.7 1.8 0 4.2 0.9 0.6





T

(
I3 03×5

)
,

where I3 is the 3-by-3 identity matrix and 03×5 is the 3-by-5 all-zero matrix. Figure 1 shows the

geometric interpretation of the preprocessing.

4.3 Uniqueness and Robustness Through Preprocessing

A potential drawback of the preprocessing is that it might increase the nonnegative rank of M. In

this section, we show how to modulate the preprocessing to prevent this behavior.

Let us define

P α(M) = M(I −αB∗) = M−αMB∗,

where 0 ≤ α ≤ 1 and B∗ ∈ B∗(M). Notice that P α(M) is well-defined because for any B∗
1,B

∗
2 ∈

B∗(M) we have MB∗
1 = MB∗

2; see Theorem 15.

Lemma 26 Let M be a nonnegative matrix such that the vertices of conv(θ(M)) are non-repeated.

Then, for any 0 ≤ α ≤ β ≤ 1,

conv(θ(M))⊆ conv(θ(P α(M)))⊆ conv(θ(P β(M)))⊆ col(θ(M))∩∆m.

Therefore,

rank+(M)≤ rank+(P
α(M))≤ rank+(P

β(M)).
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Figure 1: Geometric interpretation of the preprocessing of matrix M from Equation (10).

Proof The proof can be obtained by following exactly the same steps as the proof of Lemma 18.

Lemma 27 Let M be a nonnegative matrix such that the vertices of conv(θ(M)) are non-repeated,

then the supremum

ᾱ = sup
0≤α≤1

α such that rank+(P
α(M)) = rank+(M) (11)

is attained.

Proof We can assume without loss of generality that M does not have all-zero columns. In fact, if

M:i = 0 for some i then P α(M):i = 0 for all α ∈ [0,1] so that the nonnegative rank of P α(M) is not

affected by the zero columns of M.

Then, if ᾱ = 1, the proof is complete. Otherwise, one can easily check that, for any 0 ≤ ᾱ < 1,

we have P ᾱ(M):i 6= 0 ∀i (using a similar argument as in Lemma 17).

Finally, the result follows from the upper-semicontinuity of the nonnegative rank (Bocci et al.,

2011, Theorem 3.1): ‘If P is a nonnegative matrix, without zero columns and with rank+(P) = k,

then there exists a ball B(P,ε) centered at P and of radius ε > 0 such that rank+(N) ≥ k for all

N ∈ B(P,ε)’. Therefore, if the supremum of (11) was not attained, the matrix Pᾱ(M) would sat-

isfy rank+(Pᾱ(M)) > rank+(M) while for any α < ᾱ we would have rank+(Pα(M)) = rank+(M),
a contradiction.

Hence working with matrix P ᾱ(M) instead of M will reduce the number of solutions of the

NMF problem while preserving the nonnegative rank:

Theorem 28 Let M be a nonnegative matrix for which the vertices of conv(θ(M)) are non-repeated,

let also ᾱ be defined as in Equation (11). Then any exact NMF (U,V ) of P ᾱ(M) corresponds to an
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exact NMF (U,V Q−1) of M, while the converse is not true. In fact,

conv(θ(M))⊆ conv(θ(P ᾱ(M))).

Therefore, the NMF problem for P ᾱ(M) is more well posed.

Proof This follows directly from the definition of ᾱ, and Lemmas 26 and 27.

We now illustrate Corollary 28 on a simple example, which will lead to three other important

results.

Example 2 (Nested Squares) Let

M =







5 3 3 5

3 5 5 3

5 5 3 3

3 3 5 5






.

The problem NPP(M) restricted to the column space of M is made up of two nested squares,

conv(θ(M)) and col(θ(M))∩∆m, centered at (0,0) with side length 2 and 8 respectively, see Fig-

ure 2. The polygon corresponding to P α(M) is a square centered at (0,0) with side length depend-

ing on α, between 2 (for α = 0) and 8 (for α = 1). We can show that the largest such square still

included in a triangle corresponds to

P ᾱ(M) = P ᾱ







5 3 3 5

3 5 5 3

5 5 3 3

3 3 5 5







=
1

a







1+a 1−a 1−a 1+a

1−a 1+a 1+a 1−a

1+a 1+a 1−a 1−a

1−a 1−a 1+a 1+a






, (12)

where a =
√

2−1 and ᾱ = 4a−1
3a

(this follows from the proof of Theorem 29; see below). Hence, the

polygon conv(θ(P ᾱ(M))) is a square centered at (0,0) with side length 8a in between conv(θ(M))
and col(θ(M))∩∆m, see Figure 2. Unfortunately, the exact NMF of P ᾱ(M) is non-unique. In fact,

we will see later that it has 8 solutions (the ones drawn on Figure 2 and their rotations).

Example 2 illustrates the following three important facts:

Fact 1. Defining a well-posed NMF problem is not always possible. In other words, there does

not exist any ‘reasonable’ NMF formulation having always a unique solution (up to permutation

and scaling). In fact, Example 2 shows that, because of the symmetry of the problem, any solution

of NPP(M) can be rotated by 90, 180 or 270 degrees to obtain a different solution with exactly

the same characteristics (the rotated solutions cannot be distinguished in any reasonable way). For

example, there are 4 solutions which are the sparsest, each containing one vertex of col(θ(M))∩∆m,

see conv(θ(U2)) on Figure 2, including

U2 =







1 a 0

0 1−a 1

a 1 0

1−a 0 1






, and U

(180)
2 =







0 1−a 1

1 a 0

1−a 1 1

a 0 0






,
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Figure 2: Geometric interpretation of the preprocessing of matrix M from Equation (12).

where U
(180)
2 is the rotation of 180 degrees of U2.

Fact 2. The preprocessing makes NMF more robust. For any m-by-n matrix E such that col(E) ⊆
col(M), M+E ≥ 0, and

conv(θ(M))⊆ conv(θ(M+E))⊆ conv(P ᾱ(M)),

the exact NMF (U,V ) of P ᾱ(M) will still provide an optimal factor U for the perturbed matrix

M +E. In particular, if the matrix M is positive, then one can show that4 conv(θ(M)) is strictly

contained in conv(P ᾱ(M)) (given that ᾱ > 0) so that any sufficiently small perturbation E with

col(E)⊆ col(M) will satisfy the conditions above.

In Example 2, the vertices of M can be perturbed and, as long as they remain inside the square

defined by conv(P ᾱ(M)) (see Figure 2), the exact NMF of conv(P ᾱ(M)) will provide an exact

NMF for the perturbed matrix M. (More precisely, any matrix E such that col(E) ⊆ col(M) and

maxi, j |Ei j| ≤
√

2−1 will satisfy conv(θ(M+E))⊆ conv(P ᾱ(M)).)
Fact 3. The preprocessing makes the NMF problem more well-posed. In Example 2, even though

the NMF of P ᾱ(M) is non-unique, the set of solutions has been drastically reduced: from a two-

dimensional space to a zero-dimensional one containing eight points: conv(θ(U1)), conv(θ(U2))
and the corresponding rotated solutions, see Figure 2.

Theorem 29 Let M ∈ R
m×n
+ be such that rank(M) = rank+(M) = 3 and let ᾱ be defined as in

Equation (11). Assume also that conv(θ(P (M))) has at least four vertices. Then the number of

solutions of NPP(P ᾱ(M)) with three vertices is smaller than m+n.

Proof Let P and Q denote the outer and inner polygons of NPP(P ᾱ(M)), respectively. Let us also

parametrize the boundary of the outer polygon P with the parameter t ∈ [0,1] and the function

x : R+ → R
2 : t 7→ x(t) ∈ P,

4. Using the same ideas as in Lemma 18 and the fact that any preprocessed column must contain at least one zero entry.
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where x is a continuous function with x(0) = x(1) and {x(t) | t ∈ [0,1]} is equal to the boundary of

P. We also define the function x for values of t larger than one using x(t) = x(t −⌊t⌋) where ⌊t⌋ is

the largest integer not exceeding t. Using the construction of Aggarwal et al. (1989), we define the

function fk : R+ → R+ : t 7→ fk(t) as follows. Let t1 ∈ [0,1) and x(t1) be the corresponding point

on the boundary of P. From x(t1), we can trace the tangent to Q (that is, Q is on one side of the

tangent, and the tangent touches Q), say in the clock-wise direction, intersect it with P and hence

obtain a new point x(t2) on the boundary P (see Figure 3 for an illustration on the nested squares

problem). We assume without loss of generality that t2 ≥ t1 (if t2 happens to be larger than one, we

Figure 3: Mapping of the point x(t1) to x(t4) using the construction of Aggarwal et al. (1989).

do not round it down with the equivalent value t2 −⌊t2⌋). Starting from x(t2), we can use the same

procedure to obtain x(t3) and we apply this procedure k times to obtain the point x(tk+1), where

tk+1 ≥ ·· · ≥ t2 ≥ t1. Finally, we define fk(t1) = tk+1.

Aggarwal et al. (1989) showed that x(t1) can be taken as a vertex of a feasible solution of

NPP(P ᾱ(M)) with k vertices if and only if fk(t1) = tk+1 ≥ t1 + 1, that is, we were able to turn

around Q inside P in k + 1 steps (in fact, x(t1), x(t2), . . . , and x(tk) are the vertices of a feasible

solution).

Aggarwal et al. (1989) also showed that the function fk is continuous, non-decreasing, and

depends continuously on the vertices of Q (see also Appendix A). Figure 4 displays the function f4

for the nested squares (Example 2).

If col(θ(M))∩∆m has three vertices, then ᾱ = 1. In fact, we have that

θ(P α(M))⊆ col(θ(M))∩∆m for any 0 ≤ α ≤ 1,
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Figure 4: Function f4(t) for Example 2 using the construction of Aggarwal et al. (1989) (see also

Figure 4 and Appendix A). We only plot the function f4 in the interval [0, 1
8
] because, by

symmetry, f4(x+
1
8
) = f4(x)+

1
8
.

implying rank+(P
α(M)) = 3 for all 0 ≤ α ≤ 1. Moreover, because θ(P α(M)) has at least four ver-

tices, col(θ(M))∩∆m is the unique solution of the corresponding NPP problem: the outer polygon

is a triangle while the inner polygon has at least four vertices which are located on the edges of the

outer triangle (since ᾱ = 1 and each column of P (M) contains at least one zero entry).

Let us then assume that col(θ(M))∩∆m has at least four vertices. We show that this implies

ᾱ < 1. Assume ᾱ = 1. The polygons P = col(θ(M))∩∆m and Q = θ(P (M)) have at least 4 vertices.

Moreover, the vertices of Q are located on the boundary of P (because ᾱ = 1) on at least two

different sides of P (three vertices cannot be on the same side). It can be shown by inspection that

the optimal solution of this NPP instance must have at least four vertices, hence rank+(P (M))> 3,

a contradiction.

Next, we show that f4(t) ≤ t + 1. Assume there exists t such that f4(t) > t + 1. By continuity

of f4 with respect to the vertices of Q = conv(θ(P ᾱ(M))), there exists ε > 0 sufficiently small

such that ᾱ+ ε < 1 and such that the function f ′4 for the NPP instance with inner polygon Q′ =
conv(θ(P ᾱ+ε(M))) and the same outer polygon P satisfies f4(t)> t+1 hence rank+(P

ᾱ+ε(M))≤ 3,

a contradiction.

In Appendix A, we prove that fk is made up of pieces which are either constant or strictly

convex, with at most m+n break points corresponding to different solutions to the NPP. Therefore,

because f4 is continuous and smaller than t+1, it can intersect the line t+1 only at the break points.

Since there are at most m+ n such points corresponding to different NPP solutions, the number of

solutions of NPP(P ᾱ(M)) with three vertices is smaller than m+ n. (Notice that the bound is tight

for the nested squares example with 8 solutions.)
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Remark 30 If conv(θ(P (M))) has three vertices, they define a feasible solution for the correspond-

ing NPP problem (that is, P (M) is separable, see Theorem 23). However, the number of solutions

might be not be finite in that case. Here is an example

M =







0 0.5 0.25 0

1 0.5 0.75 1

1 0 0.1 0.5
0 1 0.9 0.5







and P (M) =







0 0.5 0 0

1 0.5 0.3 0.5
1 0 0 0

0 1 0.3 0.5






,

whose corresponding NPP problems are represented on Figure 5: the NPP of P (M) does not have

a finite number of solutions.

Figure 5: Counter-example for Theorem 29 when P (M) has three vertices.

The fact that the NPP of the matrix P ᾱ(M) can have several different solutions is untypical and,

we believe, could be due to the symmetry of the problem (as in Example 2). We conjecture that, in

general, the solution to NPP(P ᾱ(M)) is unique. In particular, we observed on randomly generated

matrices that it was, see Example 1. In fact, as the function fk(.) defined in Theorem 29 depends

continuously on the inner and outer polytopes Q and P, if these polytopes are generated randomly,

there is no reason for the values of the function fk(.) at the break points to be located on the same

line as on Figure 4.

We also conjecture that Theorem 29 holds true for any rank:

Conjecture 31 Let M be such that rank(M) = rank+(M) = k and conv(θ(P (M))) has at least

(k+1) vertices, and ᾱ be defined as in Equation (11), then the number of solutions of NPP(P ᾱ(M))
is finite.

Unfortunately, the geometric construction of Aggarwal et al. (1989) cannot be generalized to

three dimensions (or higher). To prove the conjecture, we would need to show that

• Any solution of NPP(P ᾱ(M)) is isolated. Intuitively, the preprocessing P ᾱ(M) of M grows

the inner polytope Q as long as the corresponding NPP instance has a solution with rank+(M)
vertices. If a solution was not isolated, it could be moved around while remaining feasible,

which indicates that we could grow the inner polytope Q hence increase ᾱ.
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• The number of isolated solutions is finite. We conjecture that the solutions can be character-

ized in terms of the faces of P and Q, which are finite (depending on m and n).

Remark 32 Of course computing ᾱ is non-trivial. However, for matrices of small rank, this could

be done effectively. In fact, checking whether the nonnegative rank of an m-by-n is equal to rank(M)
can be done in polynomial time in m and n provided that the rank is fixed (Arora et al., 2012). In

particular, the algorithm of Aggarwal et al. (1989) does it in O((m+n) log(min(m,n))) operations

for rank-three matrices (Gillis and Glineur, 2012a). Hence, one could for example use a bisection

method to find a good lower bound β . ᾱ and use the corresponding matrix NPP(P β(M)) to have

a more well-posed NMF problem whose solutions will be solutions of the original one.

5. Preprocessing in Practice

In this section, we address three important practical considerations of the preprocessing.

5.1 Computational Complexity of Solving (8)

It is rather straightforward to check that problem (8) can be decoupled into n independent CLLS’s,

each corresponding to a different column of M; for example, for the ith column of M, we have

min
b∈Rn

+

||M:i −Mb||22 such that M:i ≥ Mb, bi = 0. (13)

We then have n CLLS’s with n variables (actually n−1 since variable bi = 0 can be removed) and

m+ n constraints. Using interior point methods, the computational complexity for solving (13) is

of the order of O(n3.5); hence the total computational cost is of the order O(n4.5).

Figure 6 shows the computational time needed for solving (8) with respect to m for n fixed and

vice versa, for randomly generated matrices (using the rand(.) function of MATLAB R©) on a laptop

3GHz Intel R© CORE i7-2630QM CPU @2GHz 8Go RAM running MATLAB R© R2011b using the

function lsqlin(.) of MATLAB R©. The computational time is linear in m while being of the order of

n3 in n, smaller than the expected O(n4.5). Therefore, in practice, the dimension m can be rather

large while, on a standard machine, n cannot be much larger than 1000. Using parallel architecture

would allow to solve larger scale problems (see also Section 7).

5.2 Normalization of the Columns of P (M)

Since the aim eventually is to provide a good approximate NMF to the original data matrix M, we

observed that normalizing the columns of the preprocessed matrix P (M) to match the norm of the

corresponding columns of M gives better results. That is, we replace P (M) with DP (M) where

Dii =
||M:i||2

||P (M):i||2
for all i, and Di j = 0 for all i 6= j.

This scaling does not change the nice properties of the preprocessing since D is a monomial matrix,

hence QD still is an inverse-positive matrix. This scaling degree of freedom is related to the fact

that we fixed the diagonal entries of Q to one, see Section 3.2.
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Figure 6: Computational time for solving (8). On the left, m-by-100 randomly generated matri-

ces; on the right, 1000-by-n randomly generated matrices (plain) and the polynomial

2.6∗10−4n3 (dashed).

The reason for this choice is that NMF algorithms are sensitive to the norm of the columns of

M. In fact, when using the Frobenius norm, we have that the following two problems are equivalent

min
U≥0,V≥0

||M−UV ||2F ≡ min
X≥0,Y≥0

n

∑
i=1

||M:i||22
∥
∥
∥
∥

M:i

||M:i||2
−XY:i

∥
∥
∥
∥

2

2

.

Therefore, to give each column of P (M) the same importance in the objective function as in the

original NMF problem, it makes sense to use the scaling above. This is particularly critical if there

are outliers in the data set: the outliers do not look similar to the other columns of M hence their

preprocessing will not reduce much their ℓ2-norm (because they are further away from the convex

cone generated by the other columns of M). Therefore, their relative importance in the objective

function will increase in the NMF problem corresponding to P (M), which is not desirable.

5.3 Dealing with Noisy Input Matrices and/or Obtaining Sparser Preprocessing

Our technique will typically be useless when the input matrix is noisy and sparse. For example, we

have

M =





0 0

1 0

1 1



 ,P (M) =





0 0

1 0

0 1



 while Mδ =





0 δ

1 0

1 1



= P (Mδ),

for any δ > 0. This shows that the preprocessing is very sensitive to small positive entries of M. In

order to deal with such noisy and sparse matrices, we propose to relax the nonnegativity constraint

MQ ≥ 0 in (8), and solve instead

min
B∈Rn×n

+

n

∑
i=1

∥
∥
∥M:i −∑

k 6=i

M:kBki

∥
∥
∥

2

2
such that M:i + ε||M:i||∞e ≥ ∑

k 6=i

M:kBki, ∀i, (14)
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where 0 < ε ≪ 1 and e is the vector of all ones of appropriate dimension. We will denote the

corresponding preprocessing Pε(M) = M(I −B∗
ε) where B∗

ε is an optimal solution of (14). For the

example above with δ = ε = 10−2, we obtain

Pε(Mδ) =





−10−2 10−2

1 −10−2

10−4 0.99



 .

In practice, this technique also allows to obtain preprocessed matrices with more entries equal or

smaller than zero. When choosing the parameter ε, it is very important to check whether ρ(B∗
ε)< 1

so that the rank of Pε(M) is equal to the rank of M and no information is lost (we can recover the

original matrix M = Pε(M)(I −B∗
ε)

−1 given Pε(M) and B∗
ε).

6. Application to Image Processing

In this section, we apply the preprocessing technique to several image data sets. By construction,

the preprocessing procedure will remove from each image a linear combination of the other images.

As we will see, this will highlight certain localized parts of these images, essentially because the

preprocessed matrices are sparser than the original ones. We will then show that combining the

preprocessing with standard NMF algorithms naturally leads to better part-based decompositions,

because sparser matrices lead to sparser NMF solutions, see Section 2.

A direct comparison between NMF applied on the original matrix and NMF applied on the

preprocessed matrix is not very informative in itself: while the former will feature a lower approx-

imation error, the latter will provide a sparser part-based representation. This does not really tell

us whether the improvements in the part-based representation and sparsity are worth the increase in

approximation error. For that reason, we choose to compare them with a standard sparse NMF tech-

nique, described below, in order to better assess whether the increase in sparsity achieved is worth

the loss in reconstruction accuracy. Hence, we compare the following three different approaches:

• Nonnegative matrix factorization (NMF). It solves the original NMF problem from Equa-

tion (1) using the accelerated HALS algorithm (A-HALS) of Gillis and Glineur (2012b) (with

parameters α = 0.5 and ε = 0.1 as suggested by the authors), which is a block coordinate de-

scent method.

• Preprocessed NMF for different values of ε. It first computes the preprocessed matrix

Pε(M) (cf. Section 5.3), then solves the NMF problem for the rescaled preprocessed ma-

trix Pε(M)D ≈ UV ′ (cf. Section 5.2) using A-HALS and finally returns (U,V ) where V =
argminX≥0 ||M −UX ||2F . This approach will be denoted Pre-NMF(ε). (We will also indicate

in brackets the error obtained when using V =V ′Q−1, which will be, by construction, always

higher.) Notice that the preprocessed matrix may contain negative entries (when ε > 0) which

is handled by A-HALS. We do not set these entries to zero for two important reasons: (i) we

want to preserve the column space of M, (ii) the negative entries of M lead to sparser NMF

solutions: Geometrically, a negative entry in M means that a vertex of conv(M) (the inner

polytope) is not contained in ∆m (the outer polytope) making NPP(M) infeasible (as a nega-

tive entry cannot be obtained with nonnegative ones). However, the approximate solution T

of NPP(M) will have to be close to the boundary of ∆m to approximate well that vertex. In

particular, Gillis and Glineur (2008) showed that if an entry of M, say at position (i, j), is
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smaller than −||max(0,M)||F then (UV )i j = 0 for any optimal solution of NMF (1). There-

fore, when indicating the sparsity of the preprocessed matrix, negative entries will be counted

as zeros as they lead to even sparser NMF decompositions.

• Sparse NMF. The most standard technique to obtain sparse solutions for NMF problems is to

use a sparsity-inducing penalty term in the objective function. In particular, it is well-known

that adding an l1-norm penalty term induces sparser solutions (Kim and Park, 2007), and we

therefore solve the following problem:

min
U,V≥0

||M−UV ||2F +
r

∑
i=1

µi||U:i||1, ||U:i||∞ = 1 ∀i,

where ||x||1 = ∑i |xi|, ||x||∞ = maxi |xi| and µi are positive parameters controlling the sparsity

of the columns of U . In order to solve sNMF, we also use A-HALS which can easily be

adapted to handle this situation. The ℓ∞-norm constraints is not restrictive because of the

degree of freedom in the scaling of the columns of U and the corresponding rows of V , while

it prevents matrix U to converge to zero. The theoretical motivation is that the l1-norm is the

convex envelope of the l0-norm (that is, the largest convex function smaller than the l0-norm)

in the ℓ∞-ball, see Recht et al. (2010) and the references therein.

In order to compare sparse NMF with Pre-NMF(ε), the parameters µi 1 ≤ i ≤ r are tuned in

order to match the sparsity obtained by Pre-NMF(ε). The corresponding approach will be

denoted sNMF(ε).

For each approach, we will keep the best solution obtained among the same ten random initial-

izations (using the rand(.) function of MATLAB R©) and each run was allowed 1000 (outer) iterations

of the A-HALS algorithm. We will use the relative error

100
||M−UV ||F

||M||F
to asses the quality of an approximation. We will also display the error obtain by the truncated

singular value decomposition (SVD) for the same factorization rank to serve as a comparison. For

the sparsity, we use the percentage of non-zero entries5

s(U) = 100
#zeros(U)

mr
∈ [0,100], for U ∈ R

m×r.

Because the solution computed with Pre-NMF does not directly aim at minimizing the error

||M −UV ||2F , it is not completely fair to use this measure for comparison. In fact, it would be

better to compare the quality of the sparsity patterns obtained by the different techniques. For this

reason, we use the same post-processing procedure as described by Gillis and Glineur (2010) which

benefits all algorithms: once a solution is computed by one of the algorithms, the zero entries of

U are fixed and we minimize minU≥0,V≥0 ||M −UV ||2F on the remaining (nonzero) entries (again,

A-HALS can easily be adapted to handle this situation and we perform 100 additional steps on

each solution), and report the new relative approximation error as “Improved”, while the original

relative error before this postprocessing will be reported as “Plain”. The code is available at https:

//sites.google.com/site/nicolasgillis/code.

5. The negative entries of the preprocessed matrix Pε(M) for ε > 0 will be counted as zeros.
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6.1 CBCL Data Set

The CBCL face data set6 is made of 2429 gray-level images of faces with 19× 19 pixels (black is

one and white is zero). We look for an approximation of rank r = 49 as in Lee and Seung (1999).

Because of the large number of images in the data set, the preprocessing is rather slow. In fact,

we have seen in Section 5.1 that it is in O(n4.5) where n is the number of images in the data set

(it would take about one week on a laptop). Therefore, we only keep every third image for a total

of 810 images, which takes less than three hours for the preprocessing; about 10-15 seconds per

image.7

Table 1 reports the sparsity and the value of ρ(B∗
ε) for the preprocessed matrices with different

values of the parameter ε. As explained in Section 5.3, the sparsity of Pε(M) increases with ε, and

ε was chosen to make sure that ρ(B∗
ε)< 1 implying rank(Pε(M)) = rank(M).

M P (M) P0.05(M) P0.1(M)

s(.) 0 0.001 20.92 38.03

ρ(B∗
ε) 0 0.71 0.83 0.90

Table 1: CBCL data set: sparsity of the preprocessed matrices Pε(M) = MQ and corresponding

spectral radius of B∗
ε = I −Q.

Figure 7 displays a sample of images of the CBCL data set along with the corresponding pre-

processed images for different values of ε.

Figure 7: From top to bottom: CBCL sample images, corresponding preprocessed images for ε= 0,

ε = 0.05, and ε = 0.1.

We observe that the preprocessing is able to highlight some parts of the images: the eyes (faces

5 and 9), the eyebrows (faces 3, 4, 8, 10, 11, 13 and 16), the mustache (faces 14 and 15), the glasses

(faces 6, 7 and 12), the nose (faces 1 to 4) or the mouth (faces 1 to 5). Recall that the preprocessing

removes from each image of the original data set a linear combination of other images. Therefore,

6. Available at http://cbcl.mit.edu/software-datasets/FaceData2.html.

7. The MATLAB R© function lsqlin for solving CLLS problems is much slower than quadprog with interior point (which

is much faster than quadprog with active set).
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the parts of the images which are significantly different from the other images are better preserved,

hence highlighted.

We now compare the three approaches described in the introduction of this section. Table 2

gives the numerical results and shows that Pre-NMF performs competitively with sNMF in all cases

(similar relative error for similar sparsity levels).

Plain Improved s(U) s(V )

SVD 7.28 7.28 0 0

NMF 7.97 7.96 53.27 11.36

Pre-NMF(0) 9.28 (9.76) 8.37 76.78 4.42

sNMF(0) 8.34 8.20 77.62 5.19

Pre-NMF(0.05) 11.12 (12.66) 9.15 90.14 2.16

sNMF(0.05) 9.24 8.90 91.12 2.22

Pre-NMF(0.1) 13.12 (23.47) 9.88 94.58 1.17

sNMF(0.1) 10.30 9.89 94.77 1.14

Table 2: Comparison of the relative approximation error and sparsity for the CBCL image data

set. (In brackets, it is the error obtained when using V = V ′Q−1, instead of V =
argminX≥0 ||M−UX ||2F .).

Figure 8 displays the basis elements obtained for NMF, Pre-NMF(0), Pre-NMF(0.1) and

sNMF(0.1). The decomposition by parts obtained by Pre-NMF(0.1) is comparable to sNMF(0.1),

reinforcing the observation above (cf. Table 2) that Pre-NMF performs competitively with sNMF.

Our technique has the advantage that only one parameter has to be chosen (namely ε) and that

sparse solutions are naturally obtained. In fact, the user does not need to know in advance the

desired sparsity level: one just has to try different values of ε ∈ [0,1] (making sure ρ(B∗
ε) < 1) and

a sparse factor U will automatically be generated (no parameters have to be tuned in the course

of the optimization process). Moreover, Pre-NMF proves to be less sensitive to initialization than

sNMF: we rerun both algorithms for ε = 0.1 with 100 different initializations (using exactly the

same settings as above) and observe the following:

• Among the hundred solutions generated by sNMF(0.01), three did not achieve the required

sparsity (being lower than 0.85, while all others were around 0.95 as imposed). In particular,

the variance of the sparsity of the factor U for PreNMF(0.01) is 8.6910−7 while it is much

higher 1.3110−3 for sNMF(0.01). (Note that after removing the three outliers, the variance

of sNMF(0.01) is still higher being 3.2310−6.)

• The average of the relative error of Pre-NMF(0.01) is 9.94, slightly lower than sNMF(0.01)

with 9.96.

• The variance of the relative error of Pre-NMF(0.01) is 5.9710−3, lower than sNMF(0.01)

with 2.3610−2.

Remark 33 We have also tested other sparse NMF techniques and they could not match the results

obtained by sNMF, especially for high sparsity requirement. In particular, we tested the following
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Figure 8: From left to right, top to bottom: basis elements for the CBCL data set obtained with

NMF, Pre-NMF(0), Pre-NMF(0.1) and sNMF(0.1).

standard formulation using only one penalty parameter (Kim and Park, 2007)

min
U,V≥0

||M−UV ||2F +µ∑
i

||U:i||1,

and the algorithm of Hoyer (2004).

6.2 Hubble Telescope Hyperspectral Image

The Hubble data set consists of 100 spectral images of the Hubble telescope, 128×128 pixels each

(Pauca et al., 2006). It is composed of eight materials;8 see the fourth row on Figure 10. The

preprocessing took about one minute (about 0.5 second per image).9 Figure 9 displays a sample of

images of the simulated Hubble database along with the corresponding preprocessed images. The

8. These are true Hubble satellite material spectral signatures provided by the NASA Johnson Space Center.

9. The MATLAB R© function lsqlin for solving CLLS problems was again much slower (about ten times) than quadprog

with active set or with interior point which were comparable in this case.
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Figure 9: From top to bottom: Sample of Hubble images, corresponding preprocessed images for

ε = 0 and ε = 0.01.

preprocessing for ε = 0.01 highlights extremely well the constitutive parts of the Hubble telescope:

it is in fact able to extract some materials individually. Table 3 gives the sparsity and the value of ρ

for the different preprocessed matrices.

M P (M) P0.01(M)

s(.) 57 57 80

ρ(B∗
ε) 0 0.9808 0.9979

Table 3: Hubble data set: sparsity of the preprocessed matrices Pε(M) = MD and corresponding

spectral radius of B∗
ε = I −D.

Table 4 reports the numerical results. Although sNMF(0.01) identifies a solution with slightly

lower reconstruction error than Pre-NMF(0.01) (2.90 vs. 2.93), it is not able to identify the constitu-

tive materials properly while Pre-NMF(0.01) perfectly separates all eight constitutive materials. It

is also important to point out that the solutions generated by Pre-NMF(0.01) with different initial-

izations correspond in most cases10 to this optimal decomposition while the solutions generated by

sNMF are typically very different (and with very different objective function values). This indicates

that the NMF problem corresponding to the preprocessed matrix is more well posed.11

The comparison between sNMF(0) and Pre-NMF(0) is also interesting: the basis elements gen-

erated by Pre-NMF(0) (see second row of Figure 10) identify the constitutive materials much more

effectively as six of them are almost perfectly extracted, while sNMF(0) only identifies one (while

another is extracted as two separate basis elements).

10. We used 100 random initializations and obtained 61 times the optimal decomposition (in the other cases, it is always

able to detect at least six of the eight materials).

11. Of course, in general, even if an NMF formulation has a unique global minimum (up to permutation and scaling),

it will still have many local minima. Therefore, even in that situation, solutions generated with standard nonlinear

optimization algorithms might still be rather different for different initializations.
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Plain Improved s(U) s(V )

SVD 0.01 0.01 58 0

NMF 0.06 0.05 58.02 2.25

Pre-NMF(0) 0.08 (0.08) 0.07 59.16 0.13

sNMF(0) 0.37 0.36 64.14 0.63

Pre-NMF(0.01) 14.08 (75.09) 2.93 93.71 0

sNMF(0.01) 3.39 2.90 93.94 0

Table 4: Comparison of the relative approximation error and sparsity for the Hubble data set. (No-

tice that for ε= 0.01, the solution obtained using V =V ′Q−1 has a very high reconstruction

error; the reason being that Q = (I −B∗
ε) is close to being singular since ρ(B∗

ε) = 0.9979.)

Figure 10: From top to bottom: basis elements for the Hubble data set obtained by NMF, Pre-

NMF(0), sNMF(0), Pre-NMF(0.01) and sNMF(0.01).

7. Conclusion and Further Research

In this paper, we introduced a completely new approach to make NMF problems more well posed

and have sparser solutions. It is based on the preprocessing of the nonnegative data matrix M:
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given M, we compute an inverse positive matrix Q such that the preprocessed matrix P (M) = MQ

remains nonnegative and is sparse. The computation of Q relies on the resolution of constrained

linear least squares problems (CLLS). We proved that the preprocessing is well-defined, invariant

to permutation and scaling of the columns of matrix M, and preserves the rank of M (as long as the

vertices of conv(θ(M)) are non repeated).

Because P (M) is sparser than M, the corresponding NMF problem will be more well posed and

have sparser solutions. In particular, we were able to show that

• Under the separability assumption of Donoho and Stodden (2003), the preprocessing is opti-

mal as it identifies the vertices of the convex hull of the columns of M.

• Since any rank-two matrix satisfies the separability assumption, the preprocessing is optimal

for any nonnegative rank-two matrix.

• In the exact rank-three case (that is, M =UV , rank(M) = rank+(M) = 3), the preprocessing

can be used to make the set of optimal solutions of the NMF problem finite. We conjecture

that, generically, it makes it unique and that this result holds for higher rank matrices.

We also proposed a more general preprocessing that relaxes the constraint that P (M) has to

be nonnegative, which is able to deal better with noisy and sparse matrices. Moreover, it gener-

ates sparser preprocessed matrices hence sparser NMF solutions. We experimentally showed the

effectiveness of this strategy on facial and hyperspectral image data sets. In particular, it performed

competitively with a state-of-the-art sparse NMF technique based on ℓ1-norm penalty functions. It

is robust to high sparsity requirement and no parameters have to be tuned in the course of the opti-

mization process. Only one parameter has to be chosen which will allow the user to generate more

or less sparse preprocessed matrices.

The main drawback of the technique seems to be its computational cost: n CLLS problems in

n variables and m+n constraints have to be solved (where n in the number of columns of M) for a

total computational cost of the order of O(n4.5) (using MATLAB R© on a standard laptop, it limits n

to be smaller than 1000 for a few hours of computation). It would then be particularly interesting to

investigate strategies to speed up the preprocessing. Using faster solvers is one possible approach

(probably in detriment of the accuracy), for example, based on first-order methods.12 Another

possibility would be to use the following heuristic: since the preprocessing removes from each

column of M a linear combinations of the other columns, one could use only a subset of k columns

of M to be subtracted from the other columns of M. This amounts to fixing variables to zero

in the CLLS problems and would reduce the computational complexity to O(nk3.5). This subset

of columns could for example be selected such that its convex hull has a large volume, see, for

example, Klingenberg et al. (2009) for a possible heuristic; or such that they form the best possible

basis for the remaining columns (that is, use a column subset selection algorithm); see Boutsidis

et al. (2009) and the references therein.

Finally, a particularly challenging direction for research would be to design other data prepro-

cessing techniques for NMF. One approach would be to characterizing the set of inverse positive

matrices better: in this paper, we only worked with the subset of invertible M-matrices. For exam-

12. We have developed an alternating direction method (ADM), along with Ting Kei Pong, which allowed us to prepro-

cess the CBCL data set in about 10 hours with 10−3 relative accuracy; the code is available upon request.
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ple, the matrix13

M =





0 1 1

1 0 1

1 1 0





would not be modified by our preprocessing (because each column contains a zero entry corre-

sponding to positive ones in all other columns) although its NMF is not unique (cf. Section 2). In

fact, we have

MQ =





0 1 1

1 0 1

1 1 0









−1 1 1

1 −1 1

1 1 −1



= 2





1 0 0

0 1 0

0 0 1



 ,

where Q is inverse positive with Q−1 = 1
2
M, and the NMF of MQ is unique. This example shows that

working with a larger set of inverse positive matrices would allow to obtain sparser preprocessed

data matrices, hence more well-posed NMF problems with sparser solutions.
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Appendix A. Proof for Theorem 29

In this section, we prove that the function fk defined in Theorem 29 is continuous and made up of

pieces which are either constant or strictly convex (which we refer to as piecewise constant/strictly

convex). The construction described below is the same as the one proposed by Aggarwal et al.

(1989) and we refer the reader to that paper for more details. The novelty of our proof is to use

that construction to show that fk is piecewise constant/strictly convex (it was already shown to be

continuous and nondecreasing by Aggarwal et al., 1989).

Proof Let x(t1) be on the boundary of P and define the sequence x(t2), . . . , x(tk+1) as in Theorem 29

(clock-wise). As shown by Aggarwal et al. (1989), the function fk(t1) = tk+1 only depends on

1. The sides of P on which the points x(ti) 1 ≤ i ≤ k+1 lie ;

2. The intersections of the segments [x(ti),x(ti+1)] 1 ≤ i ≤ k with Q ;

and, given that these sides and intersections do not change, fk is continuously differentiable and can

be characterized in closed form (see below). These sides and intersections will change when either

• One of the points x(ti) switches from one side of the boundary of P to another. These points

correspond to the vertices of P (P has at most m vertices since it is a polygon defined with m

inequalities); or,

13. We thank Mariya Ishteva for providing us with this example.
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• One of the intersections of the segments [x(ti),x(ti+1)] 1 ≤ i ≤ k with Q changes. There is a

one-to-one correspondence between these points and the sides of Q (Q has at most n vertices

hence at most n sides).

These points where the description of fk changes (and where fk is not continuously differentiable)

are called the contact change points. Turning around the boundary of P, we might encounter more

than m+ n such points. However, two contact change points corresponding to the same change

are associated with the same sequence x(ti) 1 ≤ i ≤ k+ 1 hence the same solution to the NPP. In

fact, both sequences must share at least one point (either a vertex of P or the intersections of a

line containing a side of Q with the boundary of P) which implies, by construction, that they are the

same. Therefore, there are at most m+n contact change points corresponding to different sequences

x(ti) 1 ≤ i ≤ k+1 on the boundary of P (Aggarwal et al., 1989).

It remains to show that the pieces of fk between two contact change points are either constant

or strictly convex.

Let us then construct the function fk between two contact change points. Without loss of gener-

ality, we may assume that the perimeter of the outer polygon P is equal to one (otherwise scale the

polygons P and Q accordingly), and that the parametrization x of the boundary of P has the follow-

ing property: the distance traveled when following the boundary between x(s) and x(t) is equal to

|(s−⌊s⌋)−(t−⌊t⌋)|. In particular, if 0 ≤ s ≤ t ≤ 1, then the distance traveled between x(t) and x(s)
along the boundary of P is t − s. We may also assume without loss of generality that x(0) = (0,0)
is the vertex on P preceding x(t1) and that x(t1) = (0, t1): this amounts to translating and rotating P

and Q. We also define (see Figure 11 for an illustration)

• q = (q1,q2), the tangent point on Q between x(t1) and x(t2).

• θ, the angle between the sides of P on which x(t1) and x(t2) are.

• p, the intersection between the sides on which x(t1) and x(t2) are (note that p is on the bound-

ary of P if and only if there is one and only one vertex of P between x(t1) and x(t2)).

• d, the distance between x(0) and p.

• s, the distance between p and x(t2).

• a, the projection of q on the line [x(0), p].

• b, the projection of x(t2) on the line [x(0), p].

Case 1: The point q is on the same side as x(t1). This implies that x(t2) = p for any t1 < q1 and

no other points of the sequence is changed since x(t2) remains the same. Therefore, the function

tk+1 = fk(t1) is constant. (Notice that x(q1) is a contact change point since x(t2) will switch side

when t1 = q1.)

Case 2: The point q is on the same side as x(t2). This implies that x(t2) = q for any t1 < d.

Therefore, the function tk+1 = fk(t1) is constant. (Notice that the next contact change point will be

the first vertex of P that x(t1) crosses.)

Case 3: The point q is not on the same side as x(t1) or x(t2) (it is in the interior of P). Using the

similarity between the triangles ∆x(t1)aq and ∆x(t1)bx(t2), we have that (Aggarwal et al., 1989,

Equation (1))
q2

q1 − t1
=

ssin(θ)

d − t1 + scos(θ)
,
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Figure 11: Construction of the function f1 between two contact change points (see Aggarwal et al.

1989, Figure 3, for a similar illustration).

implying

s =
q2

sin(θ)

d − t1

q1 −q2 cot(θ)− t1
= g1(t1).

Let us show that g1(t1) is strictly convex, that is, g′′1(t1) > 0. Since q is not on the same side as

x(t1) or x(t2), we have q2 > 0 and 0 < θ < π implying
q2

sin(θ) > 0. Hence it suffices to show that

h(t1) =
d−t1
l−t1

is strictly convex, where l = q1 − q2 cot(θ). Since s > 0 and d > t1, we must have

l − t1 > 0. (Notice that x(l) is a contact change point. In fact, for t1 = l, the segments [x(t1),q]
and [p,x(t2)] become parallel implying that the intersection of Q with the segment [x(t1),x(t2)] will

change.)

We then have

h′(t1) =
d − l

(l − t1)2
.

Since h is a strictly increasing function of t1 (Aggarwal et al., 1989), h′(t1)> 0 hence d > l and

h′′(t1) = 2
d − l

(l − t1)3
> 0,

so that g1(t) is strictly convex. Finally, we have

f1(t1) = t2 = c1 + s = c1 +g1(t1),

where either

• c1 = 0 and g1 is a constant (cases 1. and 2.).

3383



GILLIS

• c1 is an appropriate constant and g1 is an increasing and strictly convex function (case 3.).

By construction, the same relationship will apply between t2 and t3 with

f2(t1) = t3 = c2 +g2(s) = c2 +g2(g1(t1)),

where c2 is an appropriate constant and g2 is either constant, or strictly convex and increasing. After

k+1 steps, we have

fk(t1) = tk+1 = ck +gk(s) = ck +(gk ◦gk−1 ◦ · · · ◦g1)(t1),

where ck is an appropriate constant and the functions gi are either constant, or strictly convex and

increasing. If one of the functions gi 1 ≤ i ≤ k is constant, then fk is constant. Otherwise the func-

tion fk(t1) = ck +(gk−1 ◦ · · · ◦ g1)(t1) is strictly convex since it is a constant plus the composition

of strictly convex and increasing functions. (In fact, the composition of one-dimensional increasing

and strictly convex functions is increasing and strictly convex.)
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